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These authors give a mathematical definition con- 
nected to the unimodular n x n matrices of finite 
group associated to a Z class. 

Our definition is connected to the geometry and 
the splitting up of the metric tensor of a crystal cell 
and to the bases of the irreducible representations of 
the holohedry of the crystal family. For these 
reasons, the letter 'g' is the abbreviation of 'geomet- 
rical'; 'Z'  is the group of positive or negative 
integers. 

We suggested this definition: 
Let x, y, z, t, u, v, ... be the n translation operators 

corresponding to a basis of a primitive Bravais cell of 
a crystal family of the n-dimensional space E ~. This 
family is said to be 'geometrically Z-irreducible' 
(gZ-irr.) if all these operators belong to the same 
irreducible representation with integer entries of the 
character table of its holohedry. If this property is not 
verified, the crystal family is said to be 'geometrically 
Z-reducible' (gZ-red.); in this case, the metric tensor 
can be split into two or more parts or, in other 
words, the cell of the crystal family is the orthogonal 
product of two or more cells belonging to two or 
more orthogonal subspaces of space E n. Now, we 
give two simple examples: 

The rectangular family of space E 2 is a gZ- 
reducible family, the WPV symbol of the holohedry 

is m_l_ m, the construction of the cell is explained as 
the rectangular product of two unequal segments. It 
is easy to see that the two operators x and y belong 
to two different irreducible representations of the 
character table of this holohedry. 

The oblic family and the square family are gZ-irr. 
crystal families of space E 2. Indeed, the two opera- 
tors x and y belong to the same irreducible represen- 
tation of dimension 1 (which is not the identity 
representation) for the oblic family and to the same 
irreducible representation of dimension 2, for the 
square family. If we consider the metric tensor of 
these two cells, we notice that it is impossible to split 
them into two parts. 
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Abstract 
Four more examples are provided to emphasize the 
extreme difficulty in deciding, by diffraction 
methods, whether a crystal structure is centrosym- 
metric or only approximately so. In these examples, 
earlier workers described and refined structures in 
noncentrosymmetric space groups; refinements in the 
corresponding centrosymmetric space groups, based 
on the original data, lead to improved results. In one 
case, apparent violations of systematic absences seem 
to preclude the centrosymmetric description; 
however, other evidence - in particular, improved 
agreement for the very weak reflections (which are 
the most sensitive to the centrosymmetric-non- 
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centrosymmetric ambiguity) - suggest that the space- 
group violations might be spurious. In any event, the 
moral is clear: extreme caution is needed when 
attempting to derive a noncentrosymmetric descrip- 
tion of a closely centrosymmetric structure. 

Introduction 
For a number of years, I have been interested in the 
problem of attempting to decide, by means of X-ray 
diffraction alone, whether a particular crystal struc- 
ture is centrosymmetric or only approximately so. As 
has been noted often, perhaps beginning with Ermer 
& Dunitz (1970), the first small deviation from 
centrosymmetry cannot be detected by normal dif- 
fraction methods since the centrosymmetric model 
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represents an exact singularity in any solution pro- 
cess: the derivatives of all diffraction intensities rela- 
tive to the antisymmetric deviations are identically 
zero. As the deviations become larger, the singulari- 
ties become near-singularities, with large correlations 
between the various 'antisymmetric' parameters - the 
parameters describing the deviations from centro- 
symmetry (as opposed to those describing the aver- 
age centrosymmetric structure, for which the 
correlations are normal). Because of these large cor- 
relations, convergence to a noncentrosymmetric solu- 
tion may be hard to achieve; but even if convergence 
can be achieved - perhaps by applying damping 
factors or by an eigenvalue decomposition procedure 
- one must worry as to whether the correct solution 
has been found: with respect to the parameters 
describing the antisymmetric distortions, the mini- 
mum in the least-squares residual is a very broad one 
that might well contain numerous small local minima 
that are very sensitive to the weighting procedure 
and to systematic errors. One must then ask two 
questions: (1) Are the minima real and not the result 
of inaccurate data or unreliable weights? (2) If they 
are real, has the single correct minimum been found? 
If the answer to both questions is not 'yes' - if one 
cannot be sure that the structure is noncentrosymme- 
tric and that the derived pattern of antisymmetric 
distortions is the correct pattern - it seems prudent 
to opt for the average centrosymmetric description, 
tacitly acknowledging that small antisymmetric dis- 
tortions may be present but that they cannot be 
uniquely determined from the diffraction evidence 
(Marsh, 1986). 

I have encountered a number of additional 
examples in which authors have described nearly 
centrosymmetric structures in noncentrosymmetric 
space groups, presuming that they have found the 
correct pattern of small antisymmetric distortions. In 
all these cases, it appears as though better results - 
an improved R value or more reasonable geometry 
or both - can be obtained in the centrosymmetric 
space groups. Details follow. 

I. Synthetic perryite 

The structure of this compound, whose composition 
as determined by electron probe microanalysis 
was reported as (Ni0.97Fe0.03)8(Si0.79Po.21)3 (Okada, 
Kobayashi, Ito & Sakurai, 1991; hereinafter referred 
to as OKIS), was described in space group R3c 
[hexagonal axes: a = 6.640 (2), c = 37.982 (7) A, Z = 
12] and refined to an R of 0.027 for 333 reflections 
with Fo -> 3tr(Fo). Space group R3c seems a far better 
choice: refinement in R3c, based on the 333 Fo values 
in SUP 53898, led to a final R of 0.023 and to 
considerably smaller e.s.d.'s than reported by OKIS. 

Table 1. Perryite coordinates, space group R3c 

x, y and z are multiplied by 10 5 and Ueq is multiplied by 10 4. 

U,q = 137~i Yj Uijai* aj*ai.aj. 

x y z u~ (A 2) 
Ni(Fe)(l) 33167 (13) 41760 (13) 5226 (2) 69 (1) 
Ni(Fe)(2) 33764 (13) 3347 (13) 1744 (2) 47 (1) 
Ni(Fe)(3) 0 0 21863 (3) 56 (1) 
Ni(Fe)(4) 0 0 5959 (3) 56 (1) 
Si(P)(I) -31572 (33) 0 25000 56 (2) 
Si(P)(2) 0 0 15823 (6) 43 (2) 
Si(P)(3) 0 0 0 22 (2) 

Table 2. Perryite anisotropic coefficients (A2), space 
group R-3c 

U;j values have been multiplied by 104. The form of  the dis- 
placement  factor  is exp[-2"rr2(U~h2a .2 + U22k2b .2 + U3fl2c .2 + 
2U12hka*b* + 2U13hla*c* + 2U23klb*c*)]. 

U,~ U22 U33 U,2 U,3 U23 
Ni(Fe)(1) 66 (4) 114 (4) 1 (3) 26 (3) 5 (2) 7 (3) 
Ni(Fe)(2) 60 (4) 74 (4) - 2  (3) 26 (3) - 11 (2) 14 (2) 
Ni(Fe)(3) 86 (4) 86 (4) - 3 (5) 43 (2) 0 0 
Ni(Fe)(4) 86 (4) 86 (4) - 4  (5) 43 (2) 0 0 
Si(P)(I) 79 (8) 81 (11) 7 (8) 40 (5) 0 0 
Si(P)(2) 77 (7) 77 (7) - 26  (10) 38 (4) 0 0 
Si(P)(3) 54 (10) 54 (I0) -41 (13) 27 (5) 0 0 

The final R-3c coordinates are given in Table 1 and 
the anisotropic coefficients U/j are given in Table 2. 

A few comments on the R3c refinement are in 
order: (1) All the U33 terms became unrealistically 
small or marginally negative (Table 2). The se.ne 
general phenomenon resulted from the R3c 
refinement of OKIS (SUP 53898), although none of 
those final values was reported as negative. It is 
almost certainly due to systematic errors, perhaps 
related to absorption or to the twinning problem 
noted by OKIS. (2) Probably for the same reason, 
four reflections (0,0,18, 0,0,24, 0,0,30 and 0,0,36) 
were statistical outliers, all with Fo > IF~I; they were 
given reduced weights by OKIS and weights of 0.0 
by me (but were included in R). (3) There were 
moderately strong indications that P atoms are con- 
centrated in the Si(P)(3) sites: the Ui;'s are noticeably 
smaller (Table 2) and refinements of the distribution 
parameters continually suggested more electrons here 
than in the other two Si(P) sites. However, differen- 
ces between the final distribution parameters were 
not reliable in a statistical sense and the final results 
are based on the same assumed distributions (0.79 Si, 
0.21 P) in all three sites. 

Although the coordinate changes from the R3c to 
the R3c structure are small in an absolute sense - 
0.1 A is the largest - they are, statistically, highly 
significant (the coordinate e.s.d.'s are 0.002 A or 
less). The general description of the structure is 
unchanged. 
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OKIS note that the structure is 'isomorphous' with 
that of PdsSb3, which was also described in R3c [a = 
7.6152 (7), c = 43.032 (7) A; Wopersnow & Schubert 
(1976)]. Once again, refinement in R3c is to be 
preferred, leading to an R of 0.126 for 533 Fo values 
(recovered directly from the published paper) com- 
pared to an R of 0.14 reported for R3c. The R3c 
coordinates are given in Table 3 and the U,.j.'s in 
Table 4. As in the case of perryite, these R3c coordi- 
nates differ from the R3c coordinates by amounts 
which, though small (never more than 0.07 A), are of 
great statistical significance in view of e.s.d.'s of 
0.007 A or less. 

2. Pt(NCO)2(C12HI2N2) 

Table 3. PdsSb3 coordinates, space group R3c 

x, y, z and U~q are multiplied by 104. 

Ue q ! * * = 3ZiZjU,yai aj a,.aj. 

x y z U~q (]~2) 

Pd(1) 3321 (6) 4028 (7) 522 (1) 217 (8) 
Pd(2) 3404 (6) 310 (7) 175 (1) 208 (9) 
Pd(3) 0 0 2188 (2) 272 (11) 
Pd(4) 0 0 620 (2) 228 (10) 
Sb(l) -3189 (7) 0 2500 182 (9) 
Sb(2) 0 0 1570 (1) 191 (9) 
Sb(3) 0 0 0 198 (12) 

Table 4. Pd8Sb3 anisotropic coefficients (/~2), space 
group R-3c 

U u values have been multiplied by 10 4. The form of  the dis- 
placement factor is exp [-2~'2(U,~h2a .2 + U22k2b .2 + U331~c .2 + 

The structure of this compound, (4,4'-dimethyl- 
2,2'-bipyridyl-N,N')bis(isocyanato)platinum(II), was 
described and refined in space group Cmc2~ [a = Pd(1) 
18.722(6), b=11.889(5) ,  c=6 .688(5)  A, Z = 4 ;  Pd(2) 
Coyer, Herber & Cohen (1991); hereinafter referred Pd(3) 
to as CHC]. The resulting molecule was closely Pd(4) 

Sb(l) 
planar, no atom deviating from the plane z = 0.37 by Sb(2) 
more than 0.13 A; exact planarity leads immediately Sb(3) 
to the centrosymmetric space group Cmcm. 
Refinement in Cmcm, based on the 735 reflections 
[with Fo >-6o-(Fo); CHC] recovered from SUP 53843, 
converged routinely at R = 0.049, compared to the 
0.052 reported for Cmc21. The Cmcm refinement 
entailed 66 parameters, including Uu's for all the 
heavier atoms and an isotropic secondary-extinction 
palameter [final value 0.14 (1) × 1 0 - 6 ] ;  the H atoms Pt 
were placed in calculated positions (as in CHC), with N(I) 
those on the -CH3 group disordered between two c(1) 

C(2) 
sets of half-occupied sites. Final heavy-atom coordi- c(3) 
nates are given in Table 5. c(4) 

Changes from the earlier Cmc2~ model involve c(5) 
C(6) 

only the out-of-plane (z) coordinates and hence have N(2) 
little effect on the bond lengths and angles, c(7) 

O 

2U12hka*b* + 2U,3hla*c* + 2U23klb*c*)]. 

UII U22 U33 UI2 UI3 U23 
172 (19) 230 (21) 207 (17) 69 (18) 17 (15) -21 (15) 
120 (18) 228 (21) 262 (20) 77 (16) 36 (14) 22 (16) 
282 (24) 282 (24) 251 (31) 141 (12) 0 0 
226 (22) 226 (22) 231 (31) 113 (!1) 0 0 
190 (20) 181 (24) 172 (21) 91 (12) 0 0 
174 (19) 174 (19) 225 (29) 87 (9) 0 0 
181 (26) 181 (26) 232 (39) 90 (13) 0 0 

Table 5. Pt(NCO)2(CI2HI2N2) coordinates, space 
group Cmcm 

x, y, z and Ueq are multiplied by 10". 

Ueq = ~Y.i S'+ Uija,* aj*a,.aj. 

x y z G, (A 2) 

0 5426.0 (9) 2500 339 (2) 
693 (7) 4139 (11) 2500 360 (30) 

1406 (8) 4237 (14) 2500 507 (45) 
1840 (9) 3293 (18) 2500 626 (51) 
1551 (9) 2227 (17) 2500 521 (45) 
806 (9) 2140 (14) 2500 428 (40) 
395 (8) 3099 (14) 2500 390 (35) 

2015 (10) 1188 (18) 2500 755 (57) 
748 (10) 6606 (13) 2500 636 (49) 
999 (9) 7490 (16) 2500 492 (45) 

1297 (9) 8408 (13) 2500 920 (50) 

3. 1,3-Propanediammonium bis(dihydrogenmono- 
phosphate) 

The structure of this compound, [(NH3)(CH2)3- 
(NH3)]2+.2(H2PO4) - ,  was refined in space group Cc 
[monoclinic, a = 18.543 (3), b = 4.561 (4), c = 
15.342 (3) A, /3 = 129.14 (1) °, Z = 4; Kamoun, 
Jouini, Daoud, Durif & Guitel (1992)]. It is better 
described in C2/c, with the propanediammonium 
cation lying on a twofold axis. Starting parameters 
were obtained by suitable symmetrizing and averag- 
ing of the coordinates in Table 1 of Kamoun et al. 
(1992) [after inversion of the signs of all three coordi- 
nates of O(13) and the y coordinate of O(14) because 
of apparent misprints]. Least-squares refinement in 
C2/c, based on 3362 reflections recovered from SUP 
54431, led to an R of 0.0254 for 102 parameters - 

slightly better than the 0.027 reported by Kamoun et 
al. (1992) for, apparently, 200 parameters. As in the 
earlier Cc model, all atoms were included in the 
refinement, the H atoms with isotropic B's. Also 
included was an isotropic extinction coefficient [final 
value 15.0 (5)x 10-6]; it may have accounted for 
most of the improvement over the earlier refinement, 
as extinction was not taken into account by Kamoun 
et al. (1992). Coordinates are given in Table 6. 

A noteworthy point in this example is that intensi- 
ties were collected using Ag Ka radiation out to 0 = 
35 ° (sin0/A = 1.02 A-~); as a result, formal preci- 
sions in the results are excellent - 0.001 A or less for 
the heavier atoms, less than 0.02 A for the H atoms. 
Changes in the bond lengths resulting from the 
higher-symmetry refinement were far larger. The 
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Table 6. 1,3-Propanediammonium bis(dihydrogen- 
monophosphate) coordinates, space group C2/c 

x, y and z are multiplied by 105 for the non-H atoms and by 104 
for the H atoms. Ucq is multiplied by 105. 

Ucq = ~'~q ~y Uijai* aj*ai.aj. 
x y ~ U~q (A 2) 

P 18871 (1) 9942 (3) 57576 (1) 1413 (2) 
O(1) 26253 (3) 33521 (10) 62094 (4) 1908 (3) 
0(2) 16810 (3) -4853 (1 i) 46946 (4) 2216 (3) 
0(3) 23090 (4) - 15107 (11) 66573 (4) 2486 (4) 
0(4) 9979 (3) 20263 (14) 54774 (4) 2779 (3) 
N 7016 (4) 60352 (15) 65601 (5) 2152 (4) 
C(1) 3532 (5) 42021 (16) 70240 (6) 2339 (4) 
C(2) 0 60737 (23) 75000 2288 (5) 

B (A 2) 
H(O2) 1947 (10) 71 (36) 4529 (12) 4.2 (3) 
H(O3) 2340 (11) -2890 (36) 6422 (13) 4.5 (3) 
H(Na) 1160 (8) 7048 (27) 7088 (10) 2.6 (2) 
H(Nb) 278 (8) 7168 (27) 6013 (10) 2.6 (2) 
H(Nc) 885 (8) 4887 (29) 6305 (9) 2.7 (2) 
H(CIa) 871 (8) 2981 (29) 7597 (I i) 3.2 (3) 
H(CIb) - 114 (9) 2946 (29) 6433 (I 1) 3.6 (3) 
H(C2) 500 (9) 7378 (28) 8119 (11) 3.5 (3) 

Table 7. 1,3-Propanediammonium bis(dihydrogen- 
monophosphate) bond lengths and angles, space group 

C2/c 

Distance (A) Distance (]k) 

P--O(1) 1.521 (1) O(3)--H(O3) 0.747 (19) 
P--O(2) 1.573 (1) N--H(Na) 0.850 (14) 
P---O(3) 1.568 (1) N--H(Nb) 0.869 (14) 
P---O(4) 1.493 (1) N--H(Nc) 0.844 (14) 
N--C(I) 1.484 (1) C(1)--H(Cla) 0.969 (15) 
C(1)--C(2) 1.515 (1) C(1)--H(Clb) 0.954 (16) 
O(2)--H(O2) 0.729 (18) C(2)--H(C2) 1.002 (15) 

Angle (°) Angle (°) 

O(2)--P---O(1) 109.61 (3) H(Nc)--N--C(I) 107.4 (10) 
O(3)--P--O(1) 107.98 (3) H(Nb)--N--H(Na) 110.3 (13) 
O(4)--P---O(1) 114.89 (3) H(Nc)--N--H(Na) 109.0 (13) 
O(3)--P--O(2) 105.06 (3) H(Nc)--N--H(Nb) 107.8 (13) 
O(4)--P---O(2) 109.58 (3) H(Cla)--C(I)---N 106.1 (9) 
O(4)--P---O(3) 109.25 (3) H(CIb)---C(1)---N 106.9 (9) 
C(2)--C(I)~N 111.42 (7) H(CIa)---C(1)--C(2) 111.7 (9) 
C(1)~C(2)~C(1) 111.40 (8) H(Clb)---C(1)~C(2) 112.8 (9) 
H(O2)--O(2)--P 115.9 (14) H(CIb)---C(I)--H(CIa) 107.6 (13) 
H(O3)--O(3)--P 109.7 (14) H(C2)---C(2)---C(I) 111.6 (9) 
H(Na)--N--C(I) 109.0 (9) H(C2)---C(2)--C(I') 107.5 (9) 
H(Nb)---N---C(I) 113.3 (9) H(C2)~C(2)--H(C2') 107.2 (12) 

largest change was in the N - C  bond lengths: whereas 
the Cc refinement resulted in two highly disparate 
distances, at 1.522 (3) and 1.455 (2)A, the revised 
structure shows the bonds to be equal, by symmetry, 
at 1.484 (1)A. Revised bond lengths and angles are 
given in Table 7. The relatively large difference 
between the ~ O ( 1 )  and ~ O ( 4 )  bond lengths cor- 
relates well with the hydrogen bonding: O(1) accepts 
two strong O-H.. .O bonds ( -2 .61  A) plus a weaker 
(3.04 A) N-H. . .O bond, while 0(4) accepts two inter- 
mediate ( - 2 . 8  A) N-H-. .O bonds. 

4. 1,2,7a-Trihydroxy-2-methylperhydro- 1-phospha- 
indene 1-oxide 

This is probably the most interesting - and surely the 
most controversial - of the present examples. Crys- 
tals of this compound, C 9 H 1 7 0 4  P ,  w e r e  described as 
monoclinic [a = 12.385 (4), b = 6.590 (3), c = 
13.394 (4) A, fl = 98.00 (3) °, Z = 4, space group P21; 
Bartczak & Yagbasan (1991); hereinafter referred to 
as BY]. The authors noted that the two molecules in 
the asymmetric unit 'have almost identical but 
inverted conformations'; the point of inversion 
relating the two molecules is so positioned as to 
generate, almost exactly, space group P2~/n. 
Indications of the near-singularities that must have 
arisen during the refinement in P21 are some rela- 
tively large differences between equivalent bond 
lengths in the two molecules, ranging up to 
0.18 (3)A. Further refinement in P2~/n was clearly 
called for. 

SUP 53907 included a listing of 2228 Fo and F~ 
values - apparently the complete set of reflections 

within the quadrant  surveyed ( 0 m a  x = 70 ° for Cu Ka 
radiation; BY). All Fo values were positive. Included 
were 192 of the type (hOl) with (h + l) odd, expected 
to be missing if the true space group is P21/n; these 
showed Fo's ranging up to 7.8 e - ,  compared to a 
maximum Fo of 119.3 e-  (for the 7.02 reflection). 
While values of Ore were not included, I estimate 
that, on the average, the cutoff criterion I >  3tr(I) 
used by BY in their analysis of the structure lies at 
about Fo = 1.7 e - ;  27 of the 'odd'  hOrs exceeded that 
value. On the face of it, then, P21/n should be 
immediately rejected; but more of this later. 

Refinement in P21/n proceeded normally. Starting 
coordinates were from Table 1 of BY, appropriately 
symmetrized and averaged; full-matrix least-squares 
adjustment of 196 parameters (coordinates for all 
atoms; anisotropic Uifs for P, O and C atoms; 
isotropic B's for H atoms; scale and extinction coef- 
ficients) quickly led to convergence (maximum 
shift/tr 0.05) at R = 0.045 for 2036 reflections - all 
except the 'odd'  h0/'s; if the latter are included, with 
Fc = 0, R becomes 0.054 for the entire list of 2228 
reflections. For the P21 model, BY report an R of 
0.044 for 1902 reflections with I > 3 t r ( I ) ;  for 
the P21/n model, R is 0.045 for 1822 reflections with 
F >  1.7 e - .  Final P2~/n coordinates are given in 
Table 8. 

At this stage, then, we face an apparent dilemma: 
on the one hand, the P2~/n model, with approxi- 
mately half as many parameters, yields essentially the 
same agreement index as the P21 model and hence 
should be preferred; moreover, the resulting bond 
lengths are more normal. [For example, whereas the 
P2~ coordinates lead to C(5)-C(6) bond lengths of 
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Table 8. C 9 H I T O 4 P  coordinates, space group P21/n 

x, y, z and Ueq are multiplied by 104. B is the isotropic dis- 
placement parameter  

Ueq = ~Xi~j Uijai*aj*ai .aj. 
x y z U~q ( h  2) 

P 6325.9 (4) 34.1 (9) 2751.9 (4) 285 (1) 
O(1) 7008 (1) -619  (3) 1970 (1) 377 (4) 
0(2) 6966 (2) 1326 (3) 3607 (1) 401 (4) 
0(3) 5930 (2) -3939 (3) 2890 (2) 453 (5) 
0(4) 4693 (2) 2506 (3) 2970 (2) 376 (4) 
C(I) 5698 (2) -2086 (4) 3385 (2) 333 (5) 
C(2) 4472 (2) - 1717 (4) 3084 (2) 374 (6) 
C(3) 4285 (2) -594  (4) 2085 (2) 332 (5) 
C(4) 3125 (2) 81 (5) 1707 (2) 446 (6) 
C(5) 3080 (2) 1251 (6) 726 (2) 546 (8) 
C(6) 3867 (2) 3049 (5) 821 (3) 550 (8) 
C(7) 5036 (2) 2390 (5) 1218 (2) 413 (6) 
C(8) 5055 (2) 1271 (3) 2206 (2) 291 (5) 
C(9) 6064 (3) -2216 (6) 4500 (3) 541 (8) 

B (A 2) 

H(O2) 7387 (29) 2218 (62) 3418 (27) 7.0 (10) 
H(O3) 6612 (33) -4152 (65) 3101 (29) 8.1 (12) 
H(O4) 5038 (33) 3311 (66) 3028 (32) 7.7 (13) 
H(2a) 4207 (22) -990 (44) 3598 (20) 3.7 (6) 
H(2b) 4082 (25) -2926 (52) 3039 (22) 4.8 (7) 
H(3) 4553 (20) - 1474 (41) 1612 (19) 3.0 (5) 
H(4a) 2895 (20) 840 (43) 2289 (20) 3.5 (6) 
H(4b) 2665 (23) - 1106 (48) 1615 (21) 4.3 (7) 
H(5a) 2331 (27) 1759 (52) 506 (24) 5.6 (8) 
H(5b) 3249 (24) 356 (52) 136 (23) 5.2 (8) 
H(6a) 3644 (25) 4021 (52) 1384 (25) 5.5 (8) 
H(6b) 3865 (25) 3536 (51) 183 (24) 5.1 (8) 
H(7a) 5574 (25) 3513 (52) 1364 (23) 5.3 (8) 
H(7b) 5306 (21) 1455 (44) 777 (19) 3.4 (6) 
H(9a) 6897 (28) -2507 (55) 4638 (24) 6.0 (8) 
H(9b) 5943 (30) -991 (62) 4810 (27) 6.6 (10) 
H(9c) 5689 (28) -3122 (61) 4791 (27) 6.4 (9) 

Table 9. C 9 H 1 7 0 4 P :  comparisons between Fo and F¢ 
for the 235 reflections (excluding 'odd' hOl's) with 

Fo < 1.7 e -  

The Fc values for the P2~ structure are from SUP 53907, for the 
P2~/n structure from the present refinement. 

P21 P2Jn 

YFo 233.9 233.9 
ZIFcl 385.9 198.0 
~.IAFI 195.6 103.0 
R 0.84 0.44 

If the arguments in favor of P21/n are to be 
persuasive, we must explain the apparent presence of 
reflections hOl with (h + l) odd - and in particular the 
27 with Fo > 1.7 e - .  Of these 27, all except three 
(among the weakest) are of the type with h odd and l 
even (and small), rather than the other way around. 
This trend - of Fo being larger than Ifcl for weak 
reflections with l even and small - seems to pervade 
the entire reflection list. Was a small twin component 
present?* 

So here we have a real quandary: do we accept the 
axiom, taught by rote to all crystallographers, that 
systematic absences cannot be violated, and thus the 
space group is surely P2fl Or do we accept a differ- 
ent and probably larger body of evidence - the 
improved agreement for the weak reflections and the 
more reasonable structural results - that argues in 
favor of P21/n? 

1.44 (2)• in one molecule and 1.62 (2).~ in the 
other, the F21/n structure has the two distances equal 
by symmetry at 1.528 (5) A.] On the other hand, the 
appearance of the 'odd' hOl's argues strongly in favor 
of P21. What should we conclude? 

Fortunately, in this case there is one fairly large 
body of evidence that we can turn to - the weak 
reflections. As has been pointed out on numerous 
occasions (e.g.  Dunitz, 1979; Marsh, 1981; 
Schomaker & Marsh, 1979), the weak reflections are 
the ones most sensitive to the centrosymmetric-non- 
centrosymmetric ambiguity since the antisymmetric 
distortion present in a noncentrosymmetric model 
adds an out-of-phase 'B' component of the structure 
factors, which becomes significant when the 'A' value 
- and hence IFI i t se l f -  is small. In the present case, 
the supplementary material contains Fo values for 
235 reflections (excluding the 'odd' h0/'s) with 
F <  1 . 7 e - [ t h e  estimated I >  3or(l) cut-off]. For 
these 235 reflections, I compared Fo with the F~'s 
obtained from the final P21 (BY) and P21/n (Table 8) 
models; the results are summarized in Table 9. They 
seem unambiguous in favoring P21/n over P21: not 
only is R much smaller but the average value of IF~I 
is much closer to what one would expect. 

Concluding  remarks  

These examples point up, once again, the insensi- 
tivity of diffraction experiments to the decision as to 
whether a crystal structure is centrosymmetric or 
only approximately so. In all these instances, appar- 
ently satisfactory agreement between observed and 
calculated intensities had been obtained by the origi- 
nal authors on the basis of noncentrosymmetric 
models, yet equally satisfactory refinement - and, in 
most cases, more reasonable bond lengths - can be 
obtained in the corresponding centrosymmetric space 
groups. Even in the final example, where apparent 
violations of systematic absences should provide 
clear proof of the noncentrosymmetric space group, 
other evidence suggests that the decision is not clear- 
cut. What should one do? It continues to be my 
position that, barring conclusive evidence to the 
contrary, one should opt for the centrosymmetric 

* Among  many helpful referees' comments  was the logical 
suggestion that the appearance of  ' forbidden '  reflections might be 
due to multiple reflection (the 'Renninger '  effect) or  to A/2 wave- 
length contaminat ion.  
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description, with the implicit admission that dif- 
fraction data may well be unable to provide an 
unambiguous result.* 

* Lists of structure factors for all five compounds, U~_js for 
compounds (2), (3) and (4) and assumed H-atom coordinates for 
compound (2) have been deposited with the IUCr (Reference: 
BU311). Copies may be obtained through The Managing Editor, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH1 2HU, England. 
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Abstract 

Recently, an approach to the atomic model of the 
A1MnSi quascrystalline phase has been proposed. 
Rhombohedra that differ from those used in the 
Penrose tiling were used to form an approximant. It 
gave a good approximation to the AIMnSi quasicrys- 
tal structure. In the present paper, a strip-projection 
approach to this model is implemented. It is demon- 
strated that the tiling, with the tile edges along the 
threefold axes of the icosahedral symmetry, can also 
be used to describe the structure of the A1MnSi 
icosahedral quasicrystal. The Mackay icosahedra are 
decorated at the vertices of the tiles. 

I. Introduction 

After the first discovery of an icosahedral quasi- 
crystal (Shechtman, Blech, Gratias & Cahn, 1984), 
various models were proposed to describe its struc- 
ture (Elser & Henley, 1985; Guyot & Audier, 1985; 
Yang & Kuo, 1986; Cahn, Gratias & Mozer, 1988a; 
Duneau & Oguey, 1989; Pan, Cheng & Li, 1990; 
Andersson, Lidin, Jacob & Terasaki, 1991). A 
generally accepted geometrical model for describing 
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the quasiperiodicity and the symmetry of the quasi- 
crystals has been the Penrose tiling (Penrose, 1974; 
Mackay, 1982). It consists of two different 
rohombohedra [a prolate rhombohedron (PR) and 
an oblate rhombohedron (OR)] as the building tiles, 
packed according to a special matching rule. How- 
ever, the determination of atomic structure remains a 
principal problem. One of the approaches is to 
decorate atoms in the two kinds of Penrose tiles. An 
example shown by Elser & Henley (1985) is that the 
body-centred cubic (b.c.c.) structure of the crystalline 
approximant a-A1MnSi phase was decomposed into 
a periodic packing of the PR and OR, and its atomic 
decoration was proposed to be included in the 
icosahedral phase. Some models were proposed 
based on this approach (Henley & Elser, 1986; 
Guyot & Audier, 1985). 

A different viewpoint was offered by Audier & 
Guyot (1988). From the similarity of intensity distri- 
bution in the diffraction patterns of both the 
a-A1MnSi phase and the quasicrystalline phase, they 
suggested that the Mackay icosahedron, which is a 
54-atom cluster [(A1Si)a2Mn~2] with icosahedral sym- 
metry, is a common building block in both phases. 
Comparison of Patterson syntheses for both the 
phases (Cahn, Gratias & Mozer, 1988b) lends sup- 
port to this assumption, i.e. a description of the 
A1MnSi quasicrystal as a packing of Mackay 
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